Multi-fidelity modelling via recursive co-kriging and Gaussian-Markov random fields.
نویسندگان
چکیده
We propose a new framework for design under uncertainty based on stochastic computer simulations and multi-level recursive co-kriging. The proposed methodology simultaneously takes into account multi-fidelity in models, such as direct numerical simulations versus empirical formulae, as well as multi-fidelity in the probability space (e.g. sparse grids versus tensor product multi-element probabilistic collocation). We are able to construct response surfaces of complex dynamical systems by blending multiple information sources via auto-regressive stochastic modelling. A computationally efficient machine learning framework is developed based on multi-level recursive co-kriging with sparse precision matrices of Gaussian-Markov random fields. The effectiveness of the new algorithms is demonstrated in numerical examples involving a prototype problem in risk-averse design, regression of random functions, as well as uncertainty quantification in fluid mechanics involving the evolution of a Burgers equation from a random initial state, and random laminar wakes behind circular cylinders.
منابع مشابه
Multi-fidelity optimization via surrogate modelling
This paper demonstrates the application of correlated Gaussian process based approximations to optimization where multiple levels of analysis are available, using an extension to the geostatistical method of co-kriging. An exchange algorithm is used to choose which points of the search space to sample within each level of analysis. The derivation of the co-kriging equations is presented in an i...
متن کاملDeep Multi-fidelity Gaussian Processes
We develop a novel multi-fidelity framework that goes far beyond the classical AR(1) Co-kriging scheme of Kennedy and O’Hagan (2000). Our method can handle general discontinuous cross-correlations among systems with different levels of fidelity. A combination of multi-fidelity Gaussian Processes (AR(1) Co-kriging) and deep neural networks enables us to construct a method that is immune to disco...
متن کاملMulti-fidelity Gaussian process regression for prediction of random fields
Article history: Received 17 July 2016 Received in revised form 10 November 2016 Accepted 23 January 2017 Available online xxxx
متن کاملFast kriging of large data sets with Gaussian Markov random fields
Spatial data sets are analysed in many scientific disciplines. Kriging, i.e. minimum mean squared error linear prediction, is probably the most widely used method of spatial prediction. Computation time and memory requirement can be an obstacle for kriging for data sets with many observations. Calculations are accelerated and memory requirements decreased by using a Gaussian Markov random field...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Mathematical, physical, and engineering sciences
دوره 471 2179 شماره
صفحات -
تاریخ انتشار 2015